Amgen is a leader in biologics, with over 35 years of experience in the discovery, research, development, and manufacturing of science-based medicines. Amgen biosimilars are manufactured according to the same high standards used for innovative biologic medicines.
The goal of biosimilar development is to create a biologic drug product that is highly similar to the reference biologic product with no clinically meaningful differences in terms of safety and efficacy.1,2

Biologic proteins: structurally and functionally complex2,4

Small molecule generics: completely defined and reproducible structures2

Biosimilars are up to 1,000 times the size of small molecule generic drugs, and are far more structurally complex.3

Monoclonal antibody (mAb) – \textasciitilde150,000 Da
Small molecule drug – 180 Da

Why should physicians care about biosimilar manufacturing?
There is a strong relationship between the manufacturing process and characteristics of the final biosimilar.5 Even small changes in manufacturing can result in altered protein stability as well as impact post-translational modifications such as glycosylation — the addition of glycans (carbohydrate groups) to the structure of a mAb.5,6 Glycans can impact biologic activity and, by extension, affect overall efficacy, safety, and immunogenicity.5

Glycans can impact biologic activity and, by extension, affect overall efficacy, safety, and immunogenicity.5

Given the delicate nature of the manufacturing process, and that each manufacturer is required to develop a new process for each biosimilar, it is critical that appropriate safeguards be established to protect patients. To ensure the creation of high-quality products, biologic manufacturers should have significant:

1. Expertise with monoclonal antibodies
2. Understanding of the interplay between structure and function6
3. Quality control measures7
4. Reliability in product supply4
5. High-quality manufacturing to ensure batch-to-batch consistency6
Reference product manufacturing information is proprietary, and not publicly available. Therefore, a biosimilar manufacturer must develop an entirely new customized process. This begins with characterizing the reference biologic to quantify its critical quality attributes (CQAs), characteristics that affect identity, purity, biological activity, and stability of a drug. A custom cell line is then created and procedures developed for all manufacturing stages from cell cultivation and protein production through purification to formulation and packaging. Checkpoints are established at critical junctures during the manufacturing process to verify CQA similarity with respect to the reference product.

Characterization of reference product

The commercially acquired reference product is characterized to identify the product’s CQAs, characteristics that affect identity, purity, biological activity, and stability of a drug. A variety of robust physicochemical and functional assays are used for this purpose.

A biosimilar manufacturer may measure 100 attributes across 40 or more assays. Each manufacturer determines the extent of testing and discusses their plan with health authorities.

Range of acceptable variability of reference product CQAs

Multiple batches of reference product are tested in order to establish equivalence margins, or “goal posts” for each CQA, against which the candidate biosimilar will be evaluated.
Cell line creation
Recombinant DNA biotechnology allows large-scale production of the biosimilar mAb.

Gene synthesis
The relevant gene is cloned into a complementary DNA vector.

Expression vector
... and transferred into a host cell (human or microbial cell lines) that expresses the required protein.

Expression cell line
Chinese hamster ovary (CHO) is the industry standard. CHO cells demonstrate reliable protein folding and post-translational modifications.

Cultivation and production
The cell line that produces the required biosimilar protein with high similarity to the reference biologic is selected and then expanded in a fermentation medium to establish a master cell bank.

Isolation and purification
The biosimilar protein secreted into the culture medium is recovered through filtration or centrifugation and involves the separation of protein from cells and debris.

Formulation, fill, and finish
The concentrated protein is formulated using ultrafiltration techniques such as diafiltration and produced in volumes of up to thousands of liters in large-scale fermentation bioreactors.

State-of-the-art technology and formulation strategies are required to achieve high product purity and stability. Differences between the biosimilar and reference biologic in formulation, excipients or primary packaging are identified and their potential impact on stability and clinical performance assessed. Stability studies under multiple stress conditions are used to establish a lack of meaningful differences in degradation profiles.

Important considerations
Since each biologic is manufactured using a cell line unique to the manufacturer, no two biologics will be identical.

Important considerations
Biosimilar CQAs are sensitive to variations in the manufacturing process. Vigorous quality systems ensure that modifications in a biosimilar due to the manufacturing process fall within established margins for variability, and therefore aren’t anticipated to adversely impact safety and efficacy of the product.

Important considerations
Biosimilar CQAs are sensitive to variations in the manufacturing process. Vigorous quality systems ensure that modifications in a biosimilar due to the manufacturing process fall within established margins for variability, and therefore aren’t anticipated to adversely impact safety and efficacy of the product.
ESTABLISHING BIOSIMILARITY

Similarity is established by the totality of the evidence, including analytical characterization, nonclinical evaluation, pharmacokinetic/pharmacodynamic (PK/PD) data, immunogenicity data, and comparative clinical studies. Highly similar analytical and PK/PD data infer a lower likelihood of clinical differences between a biosimilar and its reference product.

Analytical characterization

The biosimilar protein’s primary (ie, amino acid sequence) and higher-order structures (ie, secondary, tertiary, and quaternary) are analyzed. The enzymatic post-translational modifications (eg, glycosylation, phosphorylation), potential variations (eg, oxidation), and intentional chemical modifications (eg, PEGylation sites) of the protein are additionally assessed.

Sites where heterogeneity is commonly observed on a monoclonal antibody.

Structural heterogeneity can potentially impact:
- Mechanism of action
- Pharmacokinetics
- Effector functions
- Immunogenicity
- Ligand binding
Structural and functional comparison

The structure of the biosimilar candidate is closely compared with that of the reference biologic. The biosimilar then undergoes additional functional comparative testing to ensure that its biological activity, potency, and mechanism of action are highly similar to those of the reference biologic.\(^6\)

Some attributes are uniquely critical…

…while others may impact function in a composite fashion

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Functional activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference product</td>
<td>MAY HAVE NO IMPACT</td>
</tr>
<tr>
<td>Biosimilar</td>
<td>Out of margins</td>
</tr>
</tbody>
</table>

Certain small structural differences may be permissible, provided they are shown to not impact function, and by extension, clinical safety or efficacy.\(^2\)

Clinical pharmacology and immunogenicity

PK/PD and immunogenicity analyses of a biosimilar are needed, as these profiles cannot be adequately predicted from functional assays and physiochemical characterization alone.\(^2\)

Phase 1 subject/healthy volunteer study

Equivalence studies are powered to demonstrate any significant differences between the biosimilar (B) and reference (R) product.\(^7\)

Insights for immunogenicity are initially determined with an immunocompetent patient population using a single-dose clinical study.\(^2\,7\)

Clinical studies

Active comparator clinical studies confirm no clinically meaningful differences in safety and efficacy between the biosimilar and reference product.\(^2\)

Equivalence studies are powered to demonstrate any significant differences between the biosimilar (B) and reference (R) product.\(^7\)

Important considerations

Identified differences can be further addressed in clinical studies.\(^6\)
QUALITY IN MANUFACTURING

The manufacturing process can impact a protein’s structure and can alter its biological properties. Rigorous quality standards and ongoing internal manufacturing oversight ensure that the safety, purity and potency of a biosimilar remain highly similar to those of the reference product over time.

Quality control in manufacturing

Amgen has adopted “Quality By Design” (QbD) guidance, which integrates quality control into the manufacturing process.

QbD guidance specifies continuous monitoring of:

- Laboratory
- Materials
- Production
- Packaging, labeling
- Facilities, equipment

QbD manufacturing involves:

- Enhanced product understanding (identifying CQAs of product)
- Enhanced process understanding (determining how the attributes of raw materials and process parameters impact CQAs)
- Risk management and control strategy to ensure product continuously meets quality standards

Important considerations

While QbD is not mandated by health authorities, it is advisable for numerous reasons. Notably, by requiring a comprehensive understanding of a product and its development process, QbD reduces mistakes in manufacturing in order to assure consistent quality.
Risk assessment following a process change to an approved biologic

Manufacturers frequently make changes to the manufacturing process to improve quality, efficiency and reliability. When a change is made, rigorous risk assessments are performed in alignment with international guidelines to confirm that there is no impact on quality, safety, and efficacy of the biologic.

The nature of the process change determines the level of risk assessment needed. Increasing risk requires an increasing amount of supportive data.

Increasing risk requires an increasing amount of supportive data.

Review of Approved Biologics

Approved biologics have established quality specifications with acceptable ranges of variability. Attributes are continuously monitored to ensure they meet these quality specifications and consistency is maintained from lot to lot. This intrinsic variability does not mean a reference product becomes a biosimilar of itself over time.

Important considerations

- Evaluating manufacturing process changes is distinctly different from demonstrating biosimilarity, which is a more complex process. With a manufacturing change, prior knowledge of the process can be leveraged to assess the impact of a change. For a biosimilar, a new molecule must be created without knowledge of the originator product’s manufacturing process.

Comparability is not the same as biosimilarity

Demonstrating that a proposed product is biosimilar to a reference product typically will be more complex than assessing the comparability of a product before and after manufacturing changes made by the same manufacturer.

Demonstrate Biosimilarity
Different manufacturer, new product compared with reference biologic

- No access to the originator’s product history or manufacturing process and must establish own process

Demonstrate Comparability
Same manufacturer, same product tested before and after change

- Extensive knowledge about product, manufacturing process, established controls, and acceptance parameters

Depending on risk of process change, nonclinical and clinical studies may/may not be necessary

Analytical studies

Comparative PK/PD, immunogenicity, safety and efficacy studies

Non-clinical studies

Analytical studies

Summary

Developing a biosimilar begins with reference biologic characterization. A custom manufacturing process must then be developed, involving many steps from cell line creation through formulation, fill and finish of the final product. Throughout these steps an iterative process of characterization and testing is used to evaluate the degree of similarity between the biosimilar and reference biologic. The characteristics of a biosimilar are impacted by the manufacturing process. Robust quality systems and risk assessments ensure that there is strict control over the biosimilar’s quality attributes, and by extension, its safety and efficacy profile.
At Amgen, our mission is to serve patients, and quality is a cornerstone of all of our activities. Our biosimilars are manufactured according to the same high standards as our innovative biologic medicines. Amgen’s biosimilar clinical development program is designed to stringently assess high similarity of biosimilars relative to their reference biologics.

References